How to use - LaTeX

Admin

We use the katex.org library for TeX math rendering. You can use single dollar signs to delimit inline equations, and double dollars for blocks.

Here https://katex.org/docs/support_table.html is the list of TeX functions supported by KaTeX.

Last Edit : 2019-10-08 12:16:08
Admin

16 / 09 / 2019 à 21h49

Inline equations

$c = \pm\sqrt{a^2 + b^2}$, $x > y$, $f(x) = x^2$, $\alpha = \sqrt{1-e^2}$

$c = \pm\sqrt{a^2 + b^2}$, $x > y$, $f(x) = x^2$, $\alpha = \sqrt{1-e^2}$

Admin

16 / 09 / 2019 à 21h50

Block equations

$$\sigma_{\psi}(\gamma)=\psi\Big(\gamma, \begin{pmatrix} |\gamma|^{1/2} & 0 \\\ 0 & |\gamma|^{-1/2}\end{pmatrix}\Big)$$

$$\sigma_{\psi}(\gamma)=\psi\Big(\gamma, \begin{pmatrix} |\gamma|^{1/2} & 0 \\\ 0 & |\gamma|^{-1/2}\end{pmatrix}\Big)$$

$$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$

$$\sin(\alpha)^{\theta}=\sum_{i=0}^{n}(x^i + \cos(f))$$

$$\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$

$$f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi$$

$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} 
{1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$

$$\displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$

$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b
\_k^2 \right)$$

$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b \_k^2 \right)$$

Admin

16 / 09 / 2019 à 21h50

$$\oint_C x^3\, dx + 4y^2\, dy$$

$$\oint_C x^3\, dx + 4y^2\, dy$$

$$\bigcap_1^n p   \bigcup_1^k p$$

$$\bigcap_1^n p \bigcup_1^k p$$

$$e^{i \pi} + 1 = 0$$

$$e^{i \pi} + 1 = 0$$

$$\left ( \frac{1}{2} \right )$$

$$\left ( \frac{1}{2} \right )$$

$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$

$$x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}$$

$${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$

$${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$$

$$\textstyle \sum_{k=1}^N k^2$$

$$\textstyle \sum_{k=1}^N k^2$$

$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$

$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }{ 1-\tfrac{1}{2} } = s_n$$

$$\binom{n}{k}$$

$$\binom{n}{k}$$

$$0+1+2+3+4+5+6+7+\cdots$$

$$0+1+2+3+4+5+6+7+\cdots$$

Admin

16 / 09 / 2019 à 21h51

Multiline equations

$$
\begin{array}{l}
x(t) =  - \lambda {p_0}\left( t \right) + \mu {p_1}\left( t \right),\\
y(t) = \lambda {p_{j - 1}}\left( t \right) - \left( {\lambda  + j\mu } \right){p_j}\left( t \right) + \mu \left( {j + 1} 
\right){p_{j + 1}}\left( t \right)
\end{array}
$$

$$\begin{array}{l} x(t) = - \lambda {p_0}\left( t \right) + \mu {p_1}\left( t \right),\\ y(t) = \lambda {p_{j - 1}}\left( t \right) - \left( {\lambda + j\mu } \right){p_j}\left( t \right) + \mu \left( {j + 1} \right){p_{j + 1}}\left( t \right) \end{array}$$

$$
f(x) = \int_{-\infty}^\infty
   \hat f(\xi)\,e^{2 \pi i \xi x}
   \,d\xi
$$

$$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$

$$
\displaystyle
\left( \sum\_{k=1}^n a\_k b\_k \right)^2
\leq
\left( \sum\_{k=1}^n a\_k^2 \right)
\left( \sum\_{k=1}^n b\_k^2 \right)
$$

$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)$$

$$
\dfrac{ 
    \tfrac{1}{2}[1-(\tfrac{1}{2})^n] }
    { 1-\tfrac{1}{2} } = s_n
$$

$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } { 1-\tfrac{1}{2} } = s_n$$

$$
\displaystyle 
    \frac{1}{
        \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{
        \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {
        1+\frac{e^{-6\pi}}
        {1+\frac{e^{-8\pi}}
        {1+\cdots} }
       } 
   }
$$

$$\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$

$$
f(x) = \int_{-\infty}^\infty
    \hat f(\xi)\,e^{2 \pi i \xi x}
    \,d\xi
$$

$$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$