Multiline equations
$$
\begin{array}{l}
x(t) = - \lambda {p_0}\left( t \right) + \mu {p_1}\left( t \right),\\
y(t) = \lambda {p_{j - 1}}\left( t \right) - \left( {\lambda + j\mu } \right){p_j}\left( t \right) + \mu \left( {j + 1}
\right){p_{j + 1}}\left( t \right)
\end{array}
$$
$$\begin{array}{l} x(t) = - \lambda {p_0}\left( t \right) + \mu {p_1}\left( t \right),\\ y(t) = \lambda {p_{j - 1}}\left( t \right) - \left( {\lambda + j\mu } \right){p_j}\left( t \right) + \mu \left( {j + 1} \right){p_{j + 1}}\left( t \right) \end{array}$$
$$
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
$$
$$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$
$$
\displaystyle
\left( \sum\_{k=1}^n a\_k b\_k \right)^2
\leq
\left( \sum\_{k=1}^n a\_k^2 \right)
\left( \sum\_{k=1}^n b\_k^2 \right)
$$
$$\displaystyle \left( \sum\_{k=1}^n a\_k b\_k \right)^2 \leq \left( \sum\_{k=1}^n a\_k^2 \right) \left( \sum\_{k=1}^n b\_k^2 \right)$$
$$
\dfrac{
\tfrac{1}{2}[1-(\tfrac{1}{2})^n] }
{ 1-\tfrac{1}{2} } = s_n
$$
$$\dfrac{ \tfrac{1}{2}[1-(\tfrac{1}{2})^n] } { 1-\tfrac{1}{2} } = s_n$$
$$
\displaystyle
\frac{1}{
\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{
\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {
1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}}
{1+\cdots} }
}
}
$$
$$\displaystyle \frac{1}{ \Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{ \frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} { 1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$$
$$
f(x) = \int_{-\infty}^\infty
\hat f(\xi)\,e^{2 \pi i \xi x}
\,d\xi
$$
$$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi$$